
Introduction to Phase Utilization  
with Coherent Pulsed Doppler Radars 

The Samraksh Company 
December 25, 2008 

Typical non-coherent Pulsed Doppler Radars (PDRs) report only the in-phase component of the 

Doppler frequency, in contrast coherent PDRs report the full complex Doppler frequency.  In 

high signal-to-noise environments it is possible to use either type of PDR to measure target 

motion on a scale of fractions of a wavelength.  However, the method for doing this is fairly 

different for coherent the two types of radars, and the methods for coherent PDRs tend to be far 

more robust with respect to noise. 

Specifically, for coherent PDRs when the return is dominated by one target it is advantageous to 

use changes in the phase of the Doppler frequency as a direct measure of target displacement.  

The Doppler frequency (which corresponds to target velocity) is equivalent to the rate of change 

of the Doppler phase, which implies that phase corresponds to target displacement from an 

arbitrary reference.  Thus tracking phase changes is equivalent to tracking target displacements.  

Because the phase can be measured to fractions of a wavelength, this is a very fine resolution 

method. 

Because tracking phase changes can be made relatively robust with respect to noise, it is often 

considered practical to use a coherent PDR to extract fine-scale motion information and 

impractical to use a non-coherent PDR for the same types measurements.  However, theoretically 

similar information can be obtained from a non-coherent PDR. 

This document is a tutorial on the methods of using phase information, naturally produced by a 

coherent PDR to make fine-scale motion measurements. 

The Functional Operation of PDRs 

PDRs generate pulses similar to the one shown in Figure 1.  This pulse travels to the target, is 

reflected back, and is then compared to a 

delayed copy of the pulse.  This is 

illustrated in Figure 2. 

In a high power, high cost PDRs it is 

conceptually possible to compare the 

return signal to the reference signal using a 

wide range of numerical methods, such as 

non-linear impulse response inversion; 

however, for low power, low cost PDRs 

the comparison method is typically some 

variant of the correlation between the 

returned signal and the reference signal.  

When the correlation is high the match is 

good.  The autocorrelation of the signal 

shown in Figure 1 is shown in Figure 3. -20 0 20 40 60
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Figure 1.  A stylized pulse of the type that are used 

by PDRs. 



For our purposes the most significant feature in Figure 3 is that the response as a function of 

flight path length is approximately periodic in the wavelength.  For the correlation function the 

result is less selective in range than the original pulse and the amplitude various somewhat 

significantly over a reasonably chosen window of detectability.  For these reasons the BubbleBee 

doesn’t use the simple correlation, instead it uses a comparison method that is only slightly more 

complex, but produces a response that is:  1) periodic, with period of the wavelength, over a 

window of detectability, 2) has a nearly constant response envelope as a function of range over 

the window of detectability, and 3) has a window of detectability that is nearly the same width as 

the pulse. 

Let r denote the difference between actual flight path length and the delay between the 

transmitted pulse and the reference pulse, let w denote the width of the pulse, and let O denote the 

output of the PDR.  Then a very useful model of the BumbleBee is that, 
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where A depends only on the target’s Radar Cross Section (RCS). 
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Figure 3.  The autocorrelation of the signal shown in Figure 1. 
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Figure 2.  Stylized pulse flight. 



The Operation of a Coherent PDR 

A coherent radar will compare the return to two different reference signals that are 90 degrees out 

of phase.  Example reference signals, generated from the reference signal in Figure 1, are shown 

in Figure 4.  The correlation between the transmitted waveform and the two reference waveforms 

is shown in Figure 5. 

If we imagine that the correlation responses are more or less steady state constant frequency 

oscillations, then it is natural to adopt the same phasor notation that is used for steady state 

electrical circuit analysis.  As modern PDRs use ever narrower pulses, the idea that there is a 

response region what is nearly a steady-state oscillations as a function of changes in flight path is 

not quite compelling, but this notation is widely used and has been used for a long time.  We can 

make this notation more precise by defining I to be the in-phase response of the PDR and Q to be 
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Figure 5.  The correlation functions resulting from the waveforms shown in Figure 4. 
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Figure 4.  One of the pairs of reference waveforms that might correspond to the waveform in Figure 1. 



the quadrature response.  We then arbitrarily define QiIC :  to be the total response of the 

PDR.  Then the value of C corresponding to the PDR responses as the range is varied through the 

window of detectability is shown in Figure 6. 

When the target is very far away the response is zero.  When the target is close enough to induce 

a response the response as a function of range is a phase spiral of gradually increasing amplitude.  

When the target range exactly matches the time delay between the transmitted signal and the 

reference signals, the amplitude is maximized and C is real-valued.  If the target moves still 

closer, than the response is a phase spiral of gradually decreasing amplitude.  Finally when the 

target is too close to the radar to be detected the response is negligible or even zero. 

The Use of Phase Information 

PDRs are not designed to measure range.  The simplest, and perhaps historically first, use of 

PDRs is/was as simple motion detectors; they produce a significantly non-zero response 

whenever a target is moving somewhere in the field of view.  A more sophisticated use of PDRs 

is to use the Doppler frequency to provide information about the speed of the target’s motion.  An 

even more sophisticated use of the PDR is to analyze not only the dominate Doppler Frequency, 

but also the side lobe structure or the harmonic structure of the response in order to determine 

more about the nature of the target motion. 
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Figure 6.  The complex representation of the correlation responses as a function of target range offset. 



Directly using phase information is an extreme form of this last strategy.  That is changes in the 

phase information provide the sample-by-sample form of information about the targets motion.  

Since changes in the phase are used to measure changes in range it is useful to start by 

understanding the relationship between the phase of instantaneous measurements and the range to 

the targets, but it is important to understand that the phase information doesn’t allow a PDR to 

directly measure range. 

This is because the phase information yields ambiguous range information.  To see this consider 

that at any instance in time the output of the PDR yields a point on the complex plain.  If the 

Radar Cross Section (RCS) of the target is precisely calibrated we could project the measurement 

onto the appropriate version of the curve shown in Figure 6, and thus estimate the range to the 

target.  However, this is not practical because: 

 In most scenarios the uncertainty in the target’s Radar Cross Section (RCS) is large. 

 Higher quality PDRs strive to minimize the variability of the amplitude response as a 

function of range over some defined field of view. 

As a result the operationally practical model for most PDRs is that all of the instantaneous range 

information is captured in the phase of the output. 

However, if we consider the 

mapping from the complex 

plain to the phase it is not a 

smooth function; it must have 

what is called a cut.  In the 

conventional definitions of 

phase this cut occurs along 

the negative portion of the 

real line.  This is illustrated in 

Figure 7. 

To choose to place the cut 

along the negative real line is 

arbitrary, but we must place a 

cut along some ray emanating 

from the origin. 

The implication of this cut is 

that as a target moves steadily 

towards the radar the 

measured phase steadily 

increases until it reaches   

radians, at which point it abruptly jumps to   radians and repeats the process.  This can be 

visualized as a point traversing the corkscrew spiral in 7 at a constant radius and dropping off the 

upper edge of the gap onto the lower edge of the gap. 

This cut produces ambiguity in the range corresponding to a given phase measurement.  

Specifically, it is not known how many times target has circled the origin.  This ambiguity can be 

more directly visualized by plotting the measured phase (i.e., assuming the standard cut) as a 

function of the range to the target, as is done in Figure 8.  This figure illustrates that a given phase 

measurement (e.g., 0.2 rotations in the figure) precisely constrains the path length to a set of 

values that are periodic, with a period equal to the wavelength of the radar.  Conceptually, a phase 

 
Figure 7.  The typical cut in the complex plain used when 

measuring phase. 



measurements doesn’t determine the range, but rather determines that the range is one of the 

values in a set of ranges. 

Another way of thinking about this is that the phase information provides local range information, 

on a scale of less than a wavelength, but provides no global range information.  So if the range is 

approximately known, i.e., to within a fraction of a wavelength, then the phase information 

provides very precise range information.  However, if the range to the target is only weakly 

known then the phase information in not sufficient to determine the range (essentially at all). 

More typically the phase information is not used to determine the range, but rather changes in the 

phase are used to determine changes in range.  If the phase is measured often enough so that the 

change in range between consecutive measurements is known to be less than half a wavelength 

then the pair of phase measurements uniquely determines the change in range.  A long sequence 

of phase measurements can be analyzed as a sequence of measurement pairs in order to determine 

the changes in range between each pair of measurements.  That is, small changes in range over 

short durations can then be accumulated to measure larger changes in range (i.e., multiple 

wavelength changes) that occur over longer time intervals.  This process is called phase 

unwrapping and will be discussed in the next section. 

Phase Unwrapping Methods 

In mathematical terms:  let   be defined as the measured phase, also known as the wrapped 

phase, let r  be defined as the flight path length, and let   be defined as the wavelength.  Notice 

that for the slightly simplified model of the PDR presented above the wrapped phase is, 

  


 










 2,

2)(
mod

wtr
t . 

We define the unwrapped phase u  such that, 
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and 
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Figure 8.  Range ambiguity associated with phase measurements. 



  )()()()( 0101 trtrtt uu   . 

That is, the unwrapped phase should equal the wrapped phase plus or minus some integer 

multiple of 2 , where this multiple of 2  may vary with time.  In addition the unwrapped 

phase should be such that and change in unwrapped phase corresponds to actual change in target 

range. 

Simple Algorithm 

If the phase is measured at times hjti   (for 0h ) then we may denote the measured phase 

at time jt  by jm,  and the unwrapped phase as iu , .  Further define the ideal wrapped phase at 

time jt  as  ri  2: .  Note that 

iiim  , , 

where i  denotes measurement error and noise. 

Definition 1 (Nyquist Sampling Rate):  If the output samples are taken often enough so that 
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this can be shown to be equivalent to sampling above the Nyquist rate. 

Theorem 1:  If the sampling rate is at least the Nyquist rate and if ii  ,0 , it is possible to 

exactly compute iu , .from the im, .  Furthermore the construction is 

     2,mod 1,,1,, imimiuiu . 

This formula is equivalent to changing the cut for 

every sample to occur along the ray from the 

origin in the direction exactly away from the 

previous sample.  This is illustrated in Figure 9.  

For each sample we construct a line from the 

sample through the origin and if the next sample is 

to the right of this line (i.e., when looking at the 

origin from the current sample) then the change in 

phase should be interpreted as positive and if it is 

to the right of the line then the change is negative. 

Notice that this algorithm can be implemented in 

3 or 4 lines of code in a typical high level 

language.  The complexity is increased somewhat 

if the implementation must be done in a fixed 

point, as is the case on a mote, but the extra 

complexity is not dramatic. 

Unwrapping Errors 

The phase unwrapping problem becomes interesting in the presence of noise.  In this case a 

sequence of noise events may cause the trajectory in the complex plane, i.e., nominally the phase 

spirals shown in Figure 6, to appear to wrap around the origin one extra or one fewer times than it 

really does, i.e., than the noise free measurements would. 
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Figure 9.  A pictorial representation of the 

unwrapping formula. 



This is illustrated in Figure 10.  Consider that the 

blue dots are the ideal radar output and the red 

dots are the actual outputs, perturbed by noise.  

Then the blue line is a stylized representation of 

the ideal complex response over time and the red 

line is a stylized representation of the estimated 

complex response as a function of time.  Notice 

that the idealized response crosses the cut ones 

while the estimated response doesn’t.  So the 

simplified algorithm underestimates the change 

in range by one wavelength. 

Notice that phase unwrapping errors can have 

either sign.  Consider the case where the red dots 

and the blue dots reverse roles, then the simple 

algorithm would overestimate the change in 

range by one wavelength.  However, phase 

unwrapping errors are always exactly 2 . 

If the SNR is even modest, e.g., 4 to 5 dB, and the ideal rate of phase change is a small fraction of 

a rotation, e.g., less than 6  radians per sample, then the odds of a phase unwrapping error are 

very small.  However, as the rate of change of the ideal phase approaches   radians per sample 

or as the SNR approaches about -1 dB the error rate of the simple algorithm will approach 50%. 

Tracking Algorithm 

When considering unwrapping errors between adjacent samples the errors tend to be rare and 

isolated.  However, when considering the total phase change across many samples the result is 

potentially wrong if any of the pairs of adjacent samples resulted in a phase unwrapping error.  It 

is possible for multiple errors to cancel each other out, but this case is not of conceptual 

importance.  The point is if we start from a given sample and unwrap sequentially over many 

samples, then each isolated phase unwrapping error has a persistent affect.  When unwrapping 

long sequences of phase measurements even a modest error rate will yield a high probability of 

some errors and a high probability that the total estimated phase change is distorted by a phase 

unwrapping error. 

This is illustrated in Figure 11.  Here we see that the noise produces some random variation about 

the true phase (in this case zero), but remains “locked” around the true phase until the transition 

between the 13th and 14th sample, at which point a 2  error is introduced.  The affect of this 

isolated error persists for the rest of the sequence.  Because this was an especially noisy example 

there are several additional phase unwrapping errors in this sequence. 

In general, well designed applications should exploit the unwrapped phase information knowing 

that phase unwrapping errors occur randomly, even if only occasionally. 

However, there are some methods that reduce the rate of unwrapping errors.  As stated earlier if 

the rate of change of the ideal phase is low then low pass filtering has the affect of smoothing the 

noise over many samples, reduces the impact of noise.  This doesn’t work if the ideal phase is 

changing faster than limits of the low pass filter.  Of course if the rate of change of the ideal 

phase is steadily changing then it is possible to reduce the noise by fitting a smooth function to 

the unwrapped phase.  This has the affect of averaging noise over many samples, without 

requiring the phase to be constant; it must only fit well to the selected functional form. 
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Figure 10.  A phase unwrapping error. 



For many applications we have found that fitting the unwrapped phase to short quadratic in order 

to estimate the expected location of the next sample and then using this estimate to decide the 

number of rotations around the origin that should be used when unwrapping the next sample, 

reduces the error rate from about 1 in 100 samples to about 1 in 1000 samples for data from the 

BumbleBee radar.  This procedure is stated more precisely in Table 1. 

Multiple Targets 

Up to this point we have assumed one dominate target within the field of view.  In practice there 

are times when more than one operational target are within view of the same radar and many 

times when the view of an operational target is corrupted by the presence of other moving 

objects.  In these cases the output of the PDR is the sum of the two returns. 

Specifically, if )(tci  for  ni ...1  represents the complex returns from each of the n targets, 

then the output of the radar will be  
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where   is some noise function.  At first glance disentangling the phase information from 

multiple targets may seem hopeless, but a more carful look reveals that the in most cases one of 

the targets will dominate the phase information.  In order to better understand this, consider the 

somewhat stylized case where a collection of targets present a constant RCS over a fairly long 
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Figure 11.  The result of unwrapping a high-noise sequence of phase measurements. 

Table 1.  Pseudo-code for fitting a quadratic to the phase data in order to unwrap the phase as part of an 

unwrapped phase tracking algorithm 

UnPhse(0) = Phase(0); 

for (i = 1; i++; i < N) { 

  Min = min(0, i-30); 

  Quad = Fit([Low, High-1], UnPhase[Min : i-1]); 

  Est = Extrapolate(Quad, High); 

  UnPhase(i) = Est + mod(Phase(i) – Est + Pi, 2*Pi) - Pi 

} 



time interval.  In this case each complex return can be modeled by 
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Here k  encapsulates the affects of the RCS and the gain of the various radar elements and r  

represents the flight path length.  The large natural spread of RCSs combined with the 
21 r  

dependence flight path length tends to make coefficient of the exponent, i.e., 
2rk , spread over a 

couple of orders of magnitude.  That is the largest return will typically be two or three or more 

times as large as the second largest return.  In this case the phase of the total return is a slight 

perturbation of the phase of the largest return. 

This is illustrated in Figure 12.  In this example the strong signal is 4 times as large as the week 

signal.  The phase information of the combined signal is equivalent to a slight periodic stretching 

of the phase information that would be presented by the dominant target alone. 

This insight leads to the following useful model.  The phase of the total return will almost always 

be the phase resulting from strongest/nearest target with a small perturbation caused by other 

further/weaker targets.  The exception occurs when two targets are very nearly the same strength 

and same distance from the radar. 

Target Coherence 

Finally, some targets, like the human body, do not follow the model presented in the previous 

section.  They represent a collection of many small returns.  The well worn joke that a particular 

plane is a collection of parts flying in close formation is especially application to radar returns.  

The actual returns are typically generated off of individual edges, dimples, protrusions, and 
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Figure 12.  The affect of mixing signals of unequal strength on phase measurements. 



assorted other features.  On so called “soft 

targets” these individual return generating 

features tend to move with respect to each 

other as the whole body moves through the 

field of view. 

For example a human walking might 

generate significant returns from the teeth, 

torso, arms, belt buckle, legs, and shoes.  

All of these objects move with respect to 

each other in a rather complicated pattern 

as the person walks through the field of 

view. 

This is illustrated in Figure 13.  Here we 

imagine the trajectory of the top three 

sources of return from a soft target (i.e., 

shown in three colors).  The result is a 

complicate pattern, however, at any given time the combination of these three returns may be 

equivalent to a return from a virtual target following the trajectory shown by the black line. 

 
Figure 13.  The concept of effective center of return 

for a cluster of closely connected returns. 


